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Abstract: A clean and efficient, versatile, one pot, catalyst free, multicomponent strategy for the 

synthesis of spirooxindole-indazolones and its derivatives is reported. Synergistic effect of a green 

solvent system i.e. Ethyl lactate and γ- valero lactone (GVL), enhance the product yield and make this 

protocol superior than previously reported method by our group.  This method includes several 

benefits like green solvent system, synergistic effect, high atom economy, good to excellent yield etc. 

making it valuable green alternative to the existing methods. 
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Introduction 

Spirooxindole is an essential heterocyclic moiety found in a range of alkaloids and biologically 

active compounds as a key structural motif.[i-iii] Spirooxindole compounds display a variety of 

important biological activities, such as anti-HIV[iv], anti-cancer[v], anti-tuberculosis[vi], anti-

oxidation[vii], antifungus[viii], anti-malarial[ix] and other pharmacological activities.[x]Despite the 

fact that a vast number of synthetic methods of spirooxindoles have been reported to date, 

organic chemists still face a major problem in developing more efficient approaches for 

accessing existing and novel spirooxindole derivatives.[xi-xiii] Indazolones are a biologically 

significant class of molecules from a medical perspective, constructing hybrid compounds with 
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both the spirooxindole and indazolone motifs linked onto one platform is extremely 

desirable.[xiv-xv] 

Due to a growing awareness of the need to avoid environmental harm as well as economic 

costs, the use of environmentally friendly green approaches in organic synthesis has 

experienced a significant growth in the last few decades.[xvi] 

In this context, a significant emphasis area has been to replace hazardous petroleum-based 

organic solvents with safe, inexpensive, and ecologically friendly solvents derived from bio-

renewable feed-stocks.[xvii-xviii] As a result, biomass-derived reaction media like lactic acid[xix], 

2-methyl-THF[xx], ethyl lactate[xxi], glycerol[xxii], and γ- valerolactone[xxiii], among others, 

are  growing rapidly as suitable alternatives to conventional solvents. Among these, ethyl 

lactate and GVL have emerged as an efficient and practical solvent in synthetic chemistry, as 

it fits a number of characteristics, including non-flammability, nontoxicity, non-volatility, and 

ease of availability[xxiv-xxv], thereby meeting the majority of green chemistry criteria.   

γ - valerolactone (GVL), a naturally occurring molecule in fruits that can also be generated 

from carbohydrate-based biomass, is gaining popularity.[xxvi-xxvii] GVL has been identified as a 

sustainable dipolar aprotic solvent for many processes, such as biomass conversion, 

Sonogashira reaction, and Heck coupling reactions, due to its good qualities of low toxicity, 

biodegradation, and low vapour pressure.[xxviii-xxx] GVL has a high boiling point of 207°C and 

a low melting point of 31°C. It is a colourless liquid with a low viscosity at ambient 

temperature. In a multistep procedure, it can be easily produced from cellulose or 

hemicellulose, and hence from non-food biomass.[xxxi-xxxii] Ethyl lactate is a novel green solvent 

that is an ester of lactic acid. It is a plant-based agrochemical solvent. The solvent is safe for 

the environment because it degrades gradually into carbon dioxide and water.[xxxiii] Ethyl lactate 

shows a remarkable properties such as high boiling point, low surface tension, low vapour 

pressure and it has high flash point and low volatility.[xxxiv-xxxv] As a proton donor or acceptor, 

it can establish intramolecular and intermolecular hydrogen bonds.[xxxiii] In oils, it can also 

cause vander waals interactions.[xxxvi] As a result, ethyl lactate may dissolve in both polar and 

non-polar media, allowing it to recover compounds with a broad spectrum of polarity without 

the use of a co-solvent.[xxxvii] Ethyl lactate is widely utilised in the food, pharmaceutical, and 

cosmetic sectors because to its hygroscopic and emulsifying properties.[xxxviii] To the best of 

our knowledge, synthesis of spirooxindole-indazolones and its derivatives is reported only by 

our research group previously by using glycerol as a green solvent[xxxix] and, in continuation 

with our research interest in synthesising heterocyclic molecules using green 

methodology[xl],we synthesised this compound by using GVL and ethyl lactate as a green 

solvent. We found that due to synergistic effect of ethyl lactate-GVL, product yield was 

increased as per our expectations, where ethyl lactate act as promoter to enhance the product 

yield (Scheme 1). 

Scheme 1 Synthesis of 1-phenyl-1,2,6,7-tetrahydrospiro[indazole-3,3'-indoline]-2',4(5H)-

dione4a. 
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Results and Discussion; We began with a model reaction in which isatin 1 (1mmol) and 

phenyl hydrazine 2 (1mmol) were reacted in water at a specific temperature. There was no 

hydrazone formation after 14 hours of stirring. We repeat the same reaction were carried out 

in reflux condition, the formation of hydrazone was seen after 12 hours of stirring. However, 

just a trace amount of a new product was found after the addition of dimedone 3 (1mmol). The 

experiment was now conducted at room temperature in the presence of glycerol, but the results 

were not satisfactory. To improve the yield of the product, we used ethyl lactate instead of 

glycerol, and the result was remarkably similar. However, promising results were obtained 

when the reaction was performed at 60oC in a combination of ethyl lactate -water (4:1). The 

addition of isatin (1) and phenyl hydrazine (2), a new spot formed on the TLC, which we 

assumed was the predicted hydrazone. After 30 minutes, the istain was completely disappear. 

At this time, we added dimedone and kept stirring at reflux until the hydrazone spot was 

entirely gone (TLC).When spirooxindole-indazolone 4a was isolated and identified as the 

product, it resulted in an 84% increase in yield and a (4h) reduction in reaction time. Now 

improving the yield we used GVL in place of ethyl lactate but result is remarkably similar as 

previous. Now we used the mixture of GVL: water (4:1) only trace amount of product obtain. 

Further, to enhance the yield of the product, we used a 4:2 mixture of ethyl lactate and glycerol, 

which has a synergistic effect at 80oC, resulting in 88% of yield and a reduction in reaction 

time (3.5 h). For better yield we used 3:2 mixture of ethyl lactate and GVL, which also shows 

synergistic effect at 90oC, resulting in a dramatic increase in yield (93%) and a reduction in 

reaction time (2.5 h). There was no difference in yield or reaction time when the reaction was 

carried out at a lower temperature (75oC). However, no difference in yield or reaction time was 

detected when the reaction temperature was reduced further (to 60oC). However, as the reaction 

temperature was lowered further (50oC), the yield was significantly reduced and the reaction 

time increased. Performing the same experiment at room temperature resulted in a further 

decrease in yield and an increase in reaction time. Increasing the proportion of GVL in the 

ethyl lactate-GVL solvent system (1:1) resulted in a considerable decrease in yield. The best 

conditions for performing the above reaction were at 60°C with an ethyl lactate-GVL mixture 

(3:2) as a reaction medium under catalyst free parameters, yielding the required spirooxindole-

indazolone 4a in 93% yield in 2.5 h (Table 1, entry 14). 

 

Table 1 Optimization conditions for the formation of 4aa. 

Entry              Solvent Temperature         Time     Yield 4%b 

     1.             Water         RT           14 h No reaction 

     2.             Water       Reflux          12 h Trace amount  

     3.             Glycerol         75 °C          6h         78 

     4.          Ethyl lactate         60oC          4h         87 

     5. Ethyl lactate: Water / 4:1        60oC          4h         84 

     6. Ethyl lactate: Water / 1:1        60oC          4h         76 

     7.                 GVL        60oC          5h         77 

     8.   GVL: Water / 4:1        75oC          5h  Trace amount 

     9.   GVL: Water / 3:2        75oC          6h  Trace amount 

    10. Ethyl lactate: Glycerol / 4:2        80 °C          3.5h         88 

    11. Ethyl lactate: Glycerol / 4:2        RT          4h         80 

    12. Ethyl lactate: GVL / 3:2        90oC          2.5h         93 

    13. Ethyl lactate: GVL / 3:2        75oC          2.5h         93 

    14. Ethyl lactate: GVL / 3:2        60oC          2.5h         93 

    15. Ethyl lactate: GVL / 3:2         RT           6h         82 

    16. Ethyl lactate: GVL / 1:1        80oC           5h         78 
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    17. Ethyl lactate: GVL / 1:1        60oC           5h         78 
a All reactions were carried out with 1 (1 mmol), 2 (1mmol), 3 (1mmol) in 5 mL solvent under 

air.  
bIsolated yields. 

 

Once ideal conditions for conducting this reaction have been identified, the scope and 

efficiency of the developed synthetic protocol was explored under the optimized reaction 

conditions with isatins, hydrazines and dimedones having different substituents, to furnish the 

corresponding spirooxindole-indazolones. In all the cases the desired product were obtained in 

high yields and short reaction times (Table 2). 

 

It was found that simple hydrazine produced the best results. There was a slight decrease in 

yield and a slight increase in reaction time in the case of phenyl hydrazine. Due to the presence 

of the strongly electron-withdrawing nitro group on the phenyl ring, when 2, 4- dinitrophenyl 

hydrazine was employed, there was a marked reduction in yield and an increase in reaction 

time. The substitutions on dimedone and isatin had no influence on the yield or reaction time. 

 

Table 2. Substrate scopea 
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under air. bIsolated yields. 
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Figure 1 illustrates a proposed mechanism for the production of spirooxindole-indazolones. 

The reaction starts with the formation of the anion I with the help of ethyl lactate - GVL, which 

then attacks the hydrazone C=N bond, followed by the attack of the hydrazone inner nitrogen 

lone pair on the dimedone carbonyl, results in cyclization followed by dehydration to afford 

the corresponding product. 

 

 
                      
Figure 1: Plausible mechanism for formation of spirooxindoles- indazolones. 

 

Conclusion 

In conclusion, we have designed a simple and efficient multi-component one-pot green 

approach for producing spirooxindole-indazolones. To the best of our knowledge this is the 

second green, catalyst free synthesis of spirooxindole-indazolones. This method's include 

several advantages such as, utilisation of a green solvent system which shows synergistic effect, 

catalyst-free moderate reaction conditions, high yields, quick reaction times, excellent atom 

economy, and an easy workup procedure. The tricyclic spirooxindole-indazolones frameworks 

created in this study could be useful as drug discovery scaffolds. 
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